Transducing system operated by adenosine A(2A) receptors to facilitate acetylcholine release in the rat hippocampus.
نویسندگان
چکیده
Although molecular biology studies indicate the presence of adenosine A(2A) receptors in the rat hippocampus, the pharmacological characterization of adenosine A(2A) receptor binding and of its putative facilitatory effects has revealed features essentially different from these found for adenosine A(2A) receptors in most preparations. We now confirmed that activation of adenosine A(2A) receptors with 2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxamidoadenosine (CGS 21680, 1-30 nM) or 2-hexynyl-5'-N-ethylcarboxamidoadenosine (HENECA, 3-100 nM) facilitated the veratridine-evoked [3H]acetylcholine release from hippocampal synaptosomes with a maximal effect of 14+/-2% and 16+/-2%, respectively. These effects were prevented by the adenosine A(2A) receptor antagonists, 4-(2-[7-amino-2-[2-furyl][1,2,4]-triazolo[2,3a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM 241385, 20 nM) and 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261, 20 nM), but not by the adenosine A(1) receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 20 nM). Adenosine A(2A) receptors may activate adenylate cyclase and protein kinase A since CGS 21680 (10 nM) facilitation of [3H]acetylcholine release was occluded by 8-bromo-cAMP (0.5 mM) and forskolin (10 microM) and prevented by H-89 (1 microM), but unaffected by phorbol-12,13-didecanoate (250 nM) or bisindolylmaleimide I (1 microM). The existence of adenosine A(2A) receptors in hippocampal nerve terminals was further confirmed by a Western blot immunoreactivity qualitatively identical to that found in the striatum. This constitutes the first pharmacological identification of canonical adenosine A(2A) receptors coupling to the expected cAMP/protein kinase A pathway in the hippocampus with the expected immunoreactivity.
منابع مشابه
Modification of adenosine modulation of acetylcholine release in the hippocampus of aged rats.
Adenosine is a neuromodulator acting through inhibitory A(1) receptors (A(1)Rs) and facilitatory A(2A)Rs. Since A(2A)R antagonists attenuate memory deficits in aged animals and memory deficits might involve a decreased cholinergic function, we investigated how aging affects the density and function of adenosine receptors in rat hippocampal cholinergic terminals. In young adult (2 months) rats, ...
متن کاملModulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices
Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...
متن کاملEffect of imipramine and desipramine on adenosine receptors in isolated rat atria
The effect of different doses (1-50 µ M) of imipramine (IMI) and desipramine (DES) on the rate and force of contraction of isolated rat atria was studied. IMI and DES produced a dose-dependent increase in force of contraction (31- 94% for IMI and 35-118% for DES). Pretreatment of rats with reserpine (5 mg/kg) on the isolated atria with propranolol (1 µ g) inhibited the positive ionotropic eff...
متن کاملThe Role of Extracellular Adenosine in Chemical Neurotransmission in the Hippocampus and Basal Ganglia: Pharmacological and Clinical Aspects
Now there is general agreement that the purine nucleoside adenosine is an important neuromodulator in the central nervous system, playing a crucial role in neuronal excitability and synaptic/non-synaptic transmission in the hippocampus and basal ganglia. Adenosine is derived from the breakdown of extra- or intracellular ATP and is released upon a variety of physiological and pathological stimul...
متن کاملLow-frequency Stimulation Decreases Hyperexcitability through Adenosine A1 Receptors in the Hippocampus of Kindled Rats
Introduction: In this study, the role of A1 adenosine receptors in improving the effect of Low-Frequency Electrical Stimulation (LFS) on seizure-induced hyperexcitability of hippocampal CA1 pyramidal neurons was investigated. Methods: A semi-rapid hippocampal kindling model was used to induce seizures in male Wistar rats. Examination of the electrophysiological properties of CA1 pyramidal neur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European journal of pharmacology
دوره 454 1 شماره
صفحات -
تاریخ انتشار 2002